Title: | Matrix Kendall's Tau and Matrix Elliptical Factor Model |
---|---|
Description: | Large-scale matrix-variate data have been widely observed nowadays in various research areas such as finance, signal processing and medical imaging. Modelling matrix-valued data by matrix-elliptical family not only provides a flexible way to handle heavy-tail property and tail dependencies, but also maintains the intrinsic row and column structure of random matrices. We proposed a new tool named matrix Kendall's tau which is efficient for analyzing random elliptical matrices. By applying this new type of Kendell’s tau to the matrix elliptical factor model, we propose a Matrix-type Robust Two-Step (MRTS) method to estimate the loading and factor spaces. See the details in He at al. (2022) <arXiv:2207.09633>. In this package, we provide the algorithms for calculating sample matrix Kendall's tau, the MRTS method and the Matrix Kendall's tau Eigenvalue-Ratio (MKER) method which is used for determining the number of factors. |
Authors: | Yong He [aut], Yalin Wang [aut, cre], Long Yu [aut], Wang Zhou [aut], Wenxin Zhou [aut] |
Maintainer: | Yalin Wang <[email protected]> |
License: | GPL-2 |
Version: | 1.5-4 |
Built: | 2024-11-10 03:28:27 UTC |
Source: | https://github.com/cran/MKendall |
This function is to estimate row and column factor numbers via Matrix Kendall's Tau Eigenvalue-Ratio Method.
MKER(X, kmax)
MKER(X, kmax)
X |
Input three-dimensional array, of dimension |
kmax |
The user-supplied maximum factor numbers. |
See He at al. (2022) <arXiv:2207.09633> for details.
khat |
The estimated row factor number. |
rhat |
The estimated column factor number. |
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
set.seed(123456) T=20;p=10;q=10;k=2;r=2 R=matrix(runif(p*k,min=-1,max=1),p,k) C=matrix(runif(q*r,min=-1,max=1),q,r) X=Y=E=array(0,c(T,p,q)) for(i in 1:T){ Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C) E[i,,]=matrix(rnorm(p*q),p,q) } X=Y+E fn=MKER(X,9) fn$khat; fn$rhat
set.seed(123456) T=20;p=10;q=10;k=2;r=2 R=matrix(runif(p*k,min=-1,max=1),p,k) C=matrix(runif(q*r,min=-1,max=1),q,r) X=Y=E=array(0,c(T,p,q)) for(i in 1:T){ Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C) E[i,,]=matrix(rnorm(p*q),p,q) } X=Y+E fn=MKER(X,9) fn$khat; fn$rhat
This function is to fit the large-dimensional matrix elliptical factor model via the Matrix Robust Two-Step (RTS) algorithm.
MRTS(X, k, r)
MRTS(X, k, r)
X |
Input three-dimensional array, of dimension |
k |
A positive integer indicating the row factor numbers. |
r |
A positive integer indicating the column factor numbers. |
See He at al. (2022) <arXiv:2207.09633> for details.
The return value is a list. In this list, it contains the following:
Rloading |
The estimated row loading matrix of dimension |
Cloading |
The estimated column loading matrix of dimension |
Fhat |
The estimated factor matrices, are output in the form of a three-dimensional array with dimensions of |
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
set.seed(123456) T=20;p=10;q=10;k=2;r=2 R=matrix(runif(p*k,min=-1,max=1),p,k) C=matrix(runif(q*r,min=-1,max=1),q,r) X=Y=E=array(0,c(T,p,q)) for(i in 1:T){ Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C) E[i,,]=matrix(rnorm(p*q),p,q) } X=Y+E fit=MRTS(X,k,r) fit$Rloading;fit$Cloading;fit$Fhat
set.seed(123456) T=20;p=10;q=10;k=2;r=2 R=matrix(runif(p*k,min=-1,max=1),p,k) C=matrix(runif(q*r,min=-1,max=1),q,r) X=Y=E=array(0,c(T,p,q)) for(i in 1:T){ Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C) E[i,,]=matrix(rnorm(p*q),p,q) } X=Y+E fit=MRTS(X,k,r) fit$Rloading;fit$Cloading;fit$Fhat
This function is to estimate row and column sample matrix Kendall's tau which are defined in He et al. (2022) <arXiv:2207.09633>
MSK(X, type = "1")
MSK(X, type = "1")
X |
Input three-dimensional array, of dimension |
type |
If type=1, calculate the row sample matrix Kendall's tau; if type=2, calculate the column sample matrix Kendall's tau. The default is the row sample matrix Kendall's tau. |
See He at al. (2022) <arXiv:2207.09633> for details.
If type=1, the return value is a matrix; if type=2, the return value is a
matrix.
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
X=array(rnorm(400),c(20,5,4)) MSK(X,1)
X=array(rnorm(400),c(20,5,4)) MSK(X,1)